Skip to main content

Detection Use Cases

Detection Use Cases
We wanted to share update on Sift Security detection. At Sift Security, we are focused on enabling ingestion, analysis and investigation of a wide variety of data sources. As it relates to analysis, this has led us to develop a very flexible suite of detection mechanisms. Currently, Sift Security provides two distinct detection mechanisms: a custom rules engine and an advanced anomaly detection platform. Both tools come with built-in support for common use cases and are extensible, enabling users to add detections on the fly.
Some of our customers have been asking to share more information about specific use cases we detect. In response to these requests, we created a new document called Sift Security Detection Use Cases. Please check it out and let us know if you have any questions!

Popular posts from this blog

Sift Joins Netskope, the Cloud Security Leader

Four years ago, we started Sift with the mission of simplifying security operations and incident response for the public cloud. In that time, we have assembled a fantastic team, created an innovative cloud detection and response solution, and have worked with many market-leading customers. I’m delighted to share that we’ve taken yet another step forward — as announced today, Sift is now officially part of Netskope. You can read more about this on Netskope CEO Sanjay Beri’s blog or in the official announcement on the Netskope website.
For our customers, investors, partners, and team, this is an exciting new chapter. Let me tell you why we’re so excited.  Since the beginning, Netskope has had an unmatched vision for the cloud security market. Having started in 2012, they initially focused on SaaS security and quickly followed that with IaaS security capabilities. Six years later, they are now more than 500 employees strong and used by a quarter of the Fortune 100. They are a leader in …

Sift Security Tools Release for AWS Monitoring - CloudHunter

We are excited to release CloudHunter, a web service similar to AWS CloudTrail that allows customers to visually explore and investigate their AWS cloud infrastructure.  At Sift, we felt this integration would be important for 2 main reasons:
Investigating events happening in AWS directly from Amazon is painful, unless you know exactly what event you're looking for.There are not many solutions that allow customers to follow chains of events spanning across the on-premises network and AWS on a single screen. At Netflix, we spent a lot of time creating custom tools to address security concerns in our AWS infrastructure because we needed to supplement the AWS logs, and created visualizations based on that data.  The amazing suite of open source tools from Netflix are the solutions they used to resolve their own pain points.  Hosting microservices in the cloud with continuous integration and continuous deployment can be extremely efficient and robust.  However, tracking events, espec…

Using the Security Event Graph to Drive Alert Prioritization

One of the biggest differentiators at Sift Security is our security event graph: We map security events into a graph database. We then analyze the graph structure to prioritize alerts. Specifically, we look for clusters of interrelated alerts, score the clusters, and surface the clusters to the analyst. The analyst can then investigate each cluster in order, quickly assessing the threat and resolving the alerts in bulk.  
Our algorithms do the important work of sifting through isolated alerts and separating the false alarms and low priority alerts from high priority security incidents. We identify the high priority incidents by analyzing how alerts are related to each other. Key to this approach is our security event graph. This graph is stored in a graph database, a relationship-centric database that enables rapid execution of complex queries that would be very expensive to make in a traditional RDBMS.  The graph structure enables us to rapidly traverse relationships and find interr…