Skip to main content

Anomaly Detection White Paper

Anomaly Detection White Paper
We are pleased to release a new Data Science White Paper, focused on our approach to Anomaly Detection. This paper, which is available upon request, picks up where our October 2015 Data Science White Paper left off, describing in detail our approach and the use cases we support.
The paper starts with a motivating example, describing the traces a sophisticated attacker leaves behind and how the traces can be detected. We then describe our algorithms within the context of the example and provide other use cases covered by our approach. We finish with a summary of the strategic advantages of the platform.
Read this paper to learn more about:
  • Our unsupervised anomaly detection approach, including detection of rare events, spikes, and out of context events.
  • Entity level alert roll-ups, which help users prioritize investigations.
  • The specific security use cases we address, which we map to the Lockheed cyber kill chain.
  • The key advantages of our approach and algorithms.
To learn more, get your own copy of the white paper by emailing contact@siftsec.com
Anomaly Detection White Paper

Popular posts from this blog

Sift Joins Netskope, the Cloud Security Leader

Four years ago, we started Sift with the mission of simplifying security operations and incident response for the public cloud. In that time, we have assembled a fantastic team, created an innovative cloud detection and response solution, and have worked with many market-leading customers. I’m delighted to share that we’ve taken yet another step forward — as announced today, Sift is now officially part of Netskope. You can read more about this on Netskope CEO Sanjay Beri’s blog or in the official announcement on the Netskope website.
For our customers, investors, partners, and team, this is an exciting new chapter. Let me tell you why we’re so excited.  Since the beginning, Netskope has had an unmatched vision for the cloud security market. Having started in 2012, they initially focused on SaaS security and quickly followed that with IaaS security capabilities. Six years later, they are now more than 500 employees strong and used by a quarter of the Fortune 100. They are a leader in …

Sift Security Tools Release for AWS Monitoring - CloudHunter

We are excited to release CloudHunter, a web service similar to AWS CloudTrail that allows customers to visually explore and investigate their AWS cloud infrastructure.  At Sift, we felt this integration would be important for 2 main reasons:
Investigating events happening in AWS directly from Amazon is painful, unless you know exactly what event you're looking for.There are not many solutions that allow customers to follow chains of events spanning across the on-premises network and AWS on a single screen. At Netflix, we spent a lot of time creating custom tools to address security concerns in our AWS infrastructure because we needed to supplement the AWS logs, and created visualizations based on that data.  The amazing suite of open source tools from Netflix are the solutions they used to resolve their own pain points.  Hosting microservices in the cloud with continuous integration and continuous deployment can be extremely efficient and robust.  However, tracking events, espec…

Using the Security Event Graph to Drive Alert Prioritization

One of the biggest differentiators at Sift Security is our security event graph: We map security events into a graph database. We then analyze the graph structure to prioritize alerts. Specifically, we look for clusters of interrelated alerts, score the clusters, and surface the clusters to the analyst. The analyst can then investigate each cluster in order, quickly assessing the threat and resolving the alerts in bulk.  
Our algorithms do the important work of sifting through isolated alerts and separating the false alarms and low priority alerts from high priority security incidents. We identify the high priority incidents by analyzing how alerts are related to each other. Key to this approach is our security event graph. This graph is stored in a graph database, a relationship-centric database that enables rapid execution of complex queries that would be very expensive to make in a traditional RDBMS.  The graph structure enables us to rapidly traverse relationships and find interr…